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Note 

Closed Expressions for Some Useful integrals 
Involving Legendre Functions and Sum Rules 

for Zeroes of Bessel Functions 

1. INTRODUCTION 

In Ref. [ 1 ] closed analytical expressions were obtained for a number of useful 
sums and integrals involving Legendre functions. The key point of the method was 
a comparison of magnetic vector-potential components for the toroidal solenoid 
derived by different methods (but for the same gauge and boundary conditions). 
Their coincidence stems from a well-known theorem (see, e.g., [a]) according to 
which a harmonic function (the difference of two solutions of the same Poisson 
equation is such a function) that is equal to zero at infinity (the vector-potentials of 
Ref. Cl] satisfy this condition) is identically equal to zero. This trick (i.e., the con- 
struction of new relations between special functions by comparing the solutions of 
the same equations derived by different methods) is not new. Examples of this type 
may be found in a well-known treatice on Bessel functions [3]. 

The present treatment is similar to [ 1 ] and is organized as follows. In Section 2 
we consider three different integral representations of the same function. By com- 
paring them we obtain integrals-involving Legendre functions in closed form. In 
Section 3 we study how eigenvalues of the Schrbdinger equation change when the 
vector potential A # 0 (but H = rot A = 0) is switched on in a simply connected 
space region. According to the theory (see, e.g., [4]) in the simply connected 
region the eigenvalues for A # 0 should be the same as those for A = 0. Evaluating 
the second-order terms of the perturbation theory (PT) and equating them to zero 
we obtain the sum rules for zeroes of Bessel functions of integer and semi-integer 
orders. We have not found these expressions in mathematical handbooks, treatises, 
and original publications (see, e.g., [3, 5-71). 

2. CLOSED EXPRESSIONS FOR SOME INTEGRALS INVOLVING LEGENDRE FUNCTIONS 

2.1. In Ref. [S] a functions c1 which connected the vector-potential of the 
toroidal solenoid in different gauges was used. It is defined by the double integral 

ah z) = f J‘s x. (2.1) 
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The integration in (2.1) is performed inside a circle of radius a lying in the z = 0 
plane: 0 <p, <a, 0 -C cp, < 2~ For this function in [S], the three different integral 
representations 

( 
z2+x2+p2 

Y= 
2PX > 

(2.3) 

a = JKGiiG f a,(p). cos nB 
II=0 

(2.4) 

were obtained. The variables p, 8 in (2.4) are toroidal coordinates connected with 
the cylindrical coordinates as follows: 

sh P sin 19 
p=a 

ChjA-coSe’ 
z=a 

chp-cos0 
(O<p<al, -7r<t9<7T). (2.5) 

The function a,(p) is equal to 

a,(p) = ~.(-1)“~[Q,-,;2(ch~)~~i’(1+dXX)1,2.~n-,,20 

+ f’n - &h PL) j-r, ( 1 Fxj3,2 . Qn- 1,2(x)]. (2.6) 

(P, and QV are the Legendre functions of the first and second kind, respectively.) 

2.2. Set p = 0 in (2.4). In accordance with (2.5) we should take p = 0 in (2.2). 
Equating (2.2) and (2.4) results in 

n(JzT- IzI)=JiZGi f a,(O).cosn@ 
?I=0 

(2.7) 

Substitute z = (a sin 13)/( 1 - cos 0) in (2.7), divide both sides by Jw, and 
integrate over 8 to obtain 

i 
dx 

(1 +x)3/2 
.Q,,wl,2(x)=~~~~,2 1 zsp.cos2np (q=i@). (2.8) 

The integral on the r.h.s. of (2.8) is easily evaluated. Thus, 

co 

dx ,,,Q.,-,,,x,=~[l-,,.,,,.-,,.~-~~~~~~~]. 
1 (1+x) 

(2.9) 
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In particular cases, 

s 
cc dx 

1 (1 +xY2 Q-,,*(x) = $7 

I 
02 dx 

Q,,,(x) = d (n - 3h I (1 +x)3’2 

I (1 ,dx,),*Q3,*(x)=~(~--ZR). 

Using the Whipple relation between the Legendre functions, one may transform 
(2.9) to the form 

n (-1)k 
1-(-l)n.nn-4n.(-1)” 1 - 1 k=12k-1 ’ 

(2.10) 

2.3. Equating (2.2) and (2.3) one obtains the following relation between the 
integrals involving Legendre functions: 

Taking the limits p + cc and a + cc and differentiating the expressions obtained we 
get explicit expressions for the integrals 

SJ 
na’/* 

m xdxQ:,,(r)= -- 
0 l-4 ’ 

s 
m dx 
o 7=&Q:,-,ct,= -$ 

s 

00 dx 
o ;jji~Q~,~(t)=&($---&) (t=z2+;x+a2). 

A change of variables transforms these integrals into known integrals (see, e.g., 
[S]). Put p =a, z=O in (2.11). This gives 

We have not found epressions (2.9)(2.12) in the mathematical literature. 
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3. SUM RULES FOR THE ZEROES OF THE BFSSEL FUNCTIONS 

3.1. Consider an infinite cylinder C of radius R. Let its axis coincide with the 
z axis: p = ,,/m = R, - cc < z < co. We are interested in the eigenfunctions and 
eigenvalues of the free Schriidinger equation inside this cylinder. The following 
boundary condition is imposed on the eigenfunction: Y = 0 for p = R. The eigen- 
functions and eigenvalues are equal to (see any textbook on mathematical physics 
or quantum mechanics) 

!Pis = C,, J, 

fi* 
EL,=---A;,. 

2pR* 

. exp(imcp), 

(3.1) 

Here p is the mass of a particle moving inside C, m is its angular momentum, A,, 
is an sth nonzero root of the equations J,(x) = 0. Finally, C,, is the normalizing 
constant: C,,=(l/R&)[-J,,-,(A,,)J m + i (A,,)] l’*. For simplicity (and without 
loss of generality) we limited ourselves in (3.1) to motion in the z = 0 plane. 

Now install outside C an infinite cylindrical solenoid with magnetic flux Qi. Let 
its axis be parallel to the z axis and pass through the point x = a, y = 0. Outside the 
solenoid the strength H of the magnetic field equals zero, while the 
A (H = rot A) differs from zero: 

A,=-J? y A$ x-a 
27ly*+(x-a)*' 27cy*+(x-a)*' 

vector-potential 

(3.2) 

Does the presence of a nonzero A inside C change the energy levels Ei,? We note 
that the space accessible for particles (the interior of C) is simply connected, there 
is no path along which f A, dZ#O. The theory (see, e.g., [4] says that in such a 
situation there should be no observable effects. In particular, eigenvalues of the 
Schriidinger equation - (h*/2p)(V - (ie/tlc) A)* Y= EY with nonzero A given by 
(3.2) should coincide with EL, defined by (3.1). This is true for any value of the 
dimensionless parameter y = e@/hc. This means that in the particular perturbation 
expansion in y (H=H,+H,+H,, Yms= Yz,+ YAs+ Yi,+ . . . . E,,,,=Ez,+ 
E,!,, + Ei, + ... ) the corrections to EL, should vanish separately for each order in 
y. In the first-order PT one has Ek, = (YZJ Hi 1 Yi,), H, = (2iepc) AV. From the 
expansion in the angular variable y, 

A,= -& E exp(-pLn).sinncp, 
n-l 

A,= --f!- f exp(-pn).cosnq 
(p=&TT,expp=a/p), (3.3) 

27v n=l 
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it follows at once that the equation E,& = 0 is satisfied automatically. In the second- 
order PT one obtains for the eigenvalues 

It follows from (3.4) that Ei, does not vanish trivially. The substitution of the 
unperturbed eigenfunctions (3.1) and vector-potentials (3.3) in (3.4) leads to cum- 
bersome relations between the radial integrals. Fortunately, they are simplified for 
R 4 a (i.e., when the radius of the available cylindrical cavity is small). Thus, 

(It should be recalled that A,, is an sth nonzero root of the equation J,(x) = 0). 
The requirement that E& vanish suggests the following sum rule for the zeroes of 
Bessel functions: 

This expression is simplified for m = 0, 

(3.5) 

(3.6) 

3.2. Let the space available for particles be a sphere S of radius R (i.e., 
inside the sphere the eigenfunctions satisfy the free Schrodinger equation with 
boundary condition Y(r = R) = 0). Installing outside the sphere a cylindrical 
solenoid we create inside S a magnetic field with H= 0, but A # 0. The space 
accessible for particles is simply connected. Thus the existence of a nonzero A inside 
S should not change the energy levels. Thus, we require the energy shift to vanish 
in each order of PT in the parameter y = e@/k. The corrections of the first order 
vanish automatically. In the second-order correction one obtains the two nontrivial 
sum rules 

21+3 w:+ 1 s’ 

-= -f: (w:,-co~+l,,,)3 160; (12 01, 

21- 1 2 
~- 

16~0; - f: (w;:;;:‘,.,,)~ 
(13 1). (3.8) 
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Here olS is an sth root of the equation J,+ ,,*(x) = 0. For I = 0, 1, one finds 

3 1 --= 
16 o& 

As mentioned earlier, we have not found these expressions in the mathematical 
literature. 

4. CONCLUSION 

It is astonishing how closely mathematical and physical aspects are intermixed in 
some problems. For example, a rather abstract quantum-mechanical principle (non- 
observability of certain physical effects in simply connected space regions) generates 
nontrivial relations between the zeroes of Bessel functions. There is no doubt that 
once these relations have been derived, they will be obtained later without reliance 
on the physical aspects. This is confirmed by consideration of the two integrals (as 
suggested by one of the referees) 

1 
4 

J,+ I(Z) P(z) dz ~- 
J,(z) C?(z) ’ 

L j 
2ni cR 

J,- I(Z) P’(z) dz, ~- 
2ni C= J,(z) Q’(z) 

Here C, is a circle of radius R; P, P’, Q, and Q’ are polynomials in z. If P/Q and 
PI/Q’ go to zero, like IzI -* (or faster), then the integral over C, vanishes as R -+ co. 
According to Cauchy’s residue theorem 

P(Z”,) J P V+l P’(Z”A J,-1 -- P’ 
;Q(z,,)=‘~~~ J, Q’ ;P’o=-CReS J, Q” 

where the sums on the r.h.s. are taken over the zeroes of Q and Q’ and z,, are non- 
zero roots of the equation J,(z)=O. For P= P’=z*, Q= (z*-z~~~,~)~, Q’= 
(z’ - zt+ 1,s)3, one obtains 

In this equation and in the equations given below the sum is taken over the positive 
zeroes. For v = m and v = I + 4 these equations transform into those obtained in the 
previous section. Other choices of P and Q are also interesting. For example, 

P= P’= 1, Q = z* - zt- I,s, Q’ = z* -z;+ ,,s 
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p=p’=22, Q = (z* - zt- l,s)*, Q’ = (z2 - zt+ l,s)* 

P=P’=l, Q = (z* - z;- ,,s)*, Q’ = (z2 -z:+ ,,J* 

P=P’=l, Q = (z2 -z:- j,J3, Q’ = (z* -z;+ J3 

qz* -::,,.,3= -$+fi+&J; YS’ -, - . 
p=p’=z4, Q = (z2 -z:- J3, Q’ = (z2 - zt+ ,,J3 

ztl,, 2Tv 
c (z~s7z~,,,,)3=8’ 

An extensive use of residue calculus for deducing previously unknown sums may 
be found in a very interesting reference [9]. 

Addendum. Having been acauainted with a nreprint version of this manuscript. Prof. Krupnikov 
E. D. (Novosibirsk State University) succeeded in deriving Eq. (2.12) 
considerations. In fact, he proved (private communication) that 

without appeal to the physical 

For v = & f this gives: 

+Q1,2dx=n-22, j, ~“~Qm,,~dx=2. 

Their adding leads to Eq. (2.12). 
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